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On shear-layer instability, breakdown and transition 

By H. P. GREENSPAN AND D. J. BENNEY 
Mathematics Department, Massachusetts Institute of Technology 

(Received 2 July 1962) 

The problem of the linear stability of a time-dependent shear flow is investigated 
and the effects of contraction and expansion of the layer are discussed. Models 
of flows observed prior to breakdown are constructed and used to investigate 
the resulting secondary instabilities which are shown to be extremely violent and 
in essential agreement with recent experiments. In relatively short time, one 
half period of the primary oscillation, the energy in the secondary disturbance 
increases by two orders of magnitude; the wave-number corresponding to maxi- 
mum amplification is five times that of the primary wave. 

1. Introduction 
The recent experiments of Klebanoff, Tidstrom & Sargent (1962) and Kovasz- 

nay, Komoda & Vasudeva (1962) concerning transition show that before break- 
down occurs an intense shear layer forms within the boundary layer on a flat 
plate. It appears that the secondary instabilities arising from the shear are 
responsible for the dramatic sudden changes in the flow which initiate transition. 

With this motivation, we have studied an extremely simple model of a class 
of unbounded time-dependent shear layers and this is presented in 5 2. In  3 3, 
the model is adapted to the case of boundary-layer transition; the results of this 
investigation and those of previous studies provide a more complete (but by 
no means final) description of the breakdown process. 

2. Stability of time-dependent shear layers 
Let Q = (U(y, t ) ,  0,O) be the vector velocity of a unidirectional incompressible 

viscous flow. It is well known (Squires theorem) that only the two-dimensional 
linear stability problem need be considered, in which case the pertinent equation 
governing the perturbation stream function $, 

q’ = v x (?pa) 
is VZ(VV2$- $J -uvz$x+ = 0. 

Furthermore, if we consider only the inviscidlimiting case, and if the disturbance 
is of the form $(x, y, t )  = Q(y, t )  eiaz, 

then ( i+ iag(y, t ) )  (E-az) aY +-iaggg+ = 0. (2.1) 

The general solution may be obtained by superposition or a Fourier integral. 
Since the applications of our theory concern flows which are not unidirec- 

tional, it  seems appropriate to comment upon the basic approach at this time. 
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Suppose Q ( x ,  y, z, t )  is a basic flow, known either analytically or experimentally, 
which resembles a unidirectional shear flow in a certain specific local region of 
space. If we are interested solely in the instabilities involving waves of small 
scales arising in this particular neighbourhood, U(y, t )  may be used in equation 
(2.1) as a, very reasonable local approximation of the real flow. Although the 
complicated basic flow must satisfy the conservation laws, the simple approxima- 
tion may not, if it is used solely to circumvent extreme analytical difficulties. 
In  other words, U(y, t )  is to be interpreted as a simple local analytical description 
of a known but very complex flow pattern, and not necessarily as a solution of 
the fundamental equations of motion. (There are few unidimensional solutions, 
none of which is pertinent in the discussion of Q 3.) 

A simple approximate (or substitute) flow pattern worthy of consideration 
because it reduces the stability equation to a tractable form, is the time-depen- 
dent shear layer, consisting of the broken-line velocity profiles? 

Here U(t )  and h(t) are to be chosen so as to simulate best a known flow in some 
neighbourhood. 

For such profiles, the term Tiuy disappears from the fundamental equation 
and is accounted for solely by jump discontinuities across the lines I yI = h(t). 

It is convenient to introduce, a t  this time, the dimensionless variables 

y* = Y/h(O), t ,  = U(O)t/h(O), E = h(t)/h(O), 

with ah(0) = k .  (Henceforth, we drop the asterisk notation.) The complete 
dimensionless problem is 

( ; + i k t )  (+) $5 = 0,  

with the boundary conditions 

where 

and 

The initial conditions are chosen to correspond to the modal solutions of the 
Rayleigh problem, equation (2.10), so that, in actuality, the functions E(t), ~ ( t )  
are defined as unity for all negative times. We determine, in this manner, the 
effects of the subsequent time variations of thickness and velocity on both the 
stable and unstable classical modal solutions. Of course, a more general initial- 

t G. F. Carrier in some unpublished research considered a similar profile in connexion 
with a shear layer whose thickness increases as Jt. 
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value problem can be solved just as easily, but many of the important features 
of the solution would then be obscured. 

The solution of the foregoing problem may be represented as 

The time-dependent coefficient functions, which are in general complex functions 
of a real variable, satisfy 

d( t )  = a( t )  e2kc+ b(t) ,  1 
g(t) = a(t)  + b( t )  e+Zkt;j 

where 

and 

d@/dt = kyF(k[( t ) )  8, 

dB/dt = kgG(k[(t)) (D; 

a( t )  = +(@ + i8) e-kE, 

b(t) = &(a - i8) e-kt; 

2xF(z) = e-22 + 22 - 1, 

2zG(z) = e-2z - 22 + 1. 

I 
(2.9) 

Before we make any general comments about this system of equations, it  is 
advisable to review briefly the classical problem of Rayleigh instability. This, 
as we have said, corresponds to the choice [ = 1, y = 1 for all t ,  so that the 
solutions of (2.7) are 

(2.10) i 
@ = 

8 = @(G/F)g, 

CT = Re{k(GF)g}, 

(Q0 = 1 is the usual choice). G is a positive or negative function depending on 
whether k is less than or larger than 0.63925, the cut-off wave-number. One 
mode is unstable in the former regime and both are neutrally stable in the latter; 
the amplification factor g has its maximum value, 0.20, at k = 0.399. 

Carrier (1954) and Esch (1957), in their extensive studies of the classical pro- 
blem, computed the amplification factor for the continuous hyperbolic tangent 
profile as well as several piecewise-linear approximations. These studies indicate 
that the profile of equation (2.4) yields results which are qualitatively and in 
some respects quantitatively correct; further increase in the number of 'broken ' 
line approximations produce only very minor changes in the maximum ampli- 
fication factor although the cut-off wave-number increases somewhat (see Esch 
1957, figure 2 ,  page 291). The evidence suggests that the simplest profile, con- 
sisting of three straight lines, is a very adequate approximation. (The classical 
Helmholtz stability problem of the vortex sheet yields neither a cut-off wave- 
number nor a finite maximum amplification rate.) 

It is desirable to characterize the amplification factor as the logarithmic 
derivative of the total energy per wave length 

1 dE 
A, = Bdt' (2.11) 
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where, as it may be shown, 
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and 

(2.12) 

(* denotes complex conjugate here). In  particular, 

QA, = - k[(@@* - 88") d(/dt - (08" + @*8)y] e-2kt, 

Q = @@* + 88" + (@a* - 88*) e--2kE, 

@@*( 1 + e-2kE) + 88*( 1 - eczkC) 
-i- e - zk )  + O,O;(I - e-2kj  

(2.13) 

(2.14) and 

The extended definition of amplification factor, in the case of Rayleigh insta- 
bility, reduces correctly to A,= c 
and E(t) = E(0)e2uL. 

E(t) 
E(O) = Q,, 

It is evident, upon inspection of equation (2.7), that the general problem may 
be reduced to the case of variable shear thickness but constant shear velocity 
through use of the new independent time variable 

For example, the solution of the particular problem, q(t) arbitrary but positive, 
t; = 1 (variable shear velocity, constant shear thickness) is then immediately 
determined to be 

(2.15) 

More generally, if Z(y, t )  = q(t)w(y), then the original equation (2.1) may be 
reduced by the same change of variable. 

We are mainly interested in the most unstable modes. Unfortunately these 
occur for wave-numbers of order one, a particularly difficult regime to analyze 
by conventional analytical methods involving perturbation or asymptotic 
techniques. Other approximation methods based on a single second-order 
differential equation or the replacement of the complicated functions P(x) and 
G(z) by simpler forms have been judged inadequate. Our basis approach there- 
fore is direct numerical integration of the system of differential equations. 

However, a general qualitative understanding of the results can be obtained 
directly from the equations. At early times, t N 0, the amplification factor is 
essentially 

If, in addition, it is assumed that [d(/dt],+ =+ 0 ( ~ ( 0 )  = l),  then the amplification 
factor is obviously reduced (increased) for values k > 8 ( < $) if Ef(O + ) is positive 
(negative). Thus it is to be expected that for a contracting shear layer the shorter 
wavelengths are excited and contain more energy than ordinarily possible (for 
5' = 0) whereas the reverse is true for the long wavelengths. If the shear layer 

A, 2: q ( t )  - (k- *) d(/dt. 
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expands, the longer wavelengths are stimulated, the shorter, somewhat sup- 
pressed. A sufficiently rapid process will actually suppress certain wavelengths 
by removing energy and accentuate others by supplying energy. The calculations 
show this conclusion to be generally true throughout the process. 

A perturbation expansion for values k < 1, y ( t )  = 1, leads to the formulas 

0 = 0, l + k  .g(t)dt+ ... 1 1: 
(2.16) 

These results also support the aforementioned conclusion by showing that for 
small wave-numbers at least, E and [ increase or decrease together. 

An asymptotic theory, for k B 1, leads to 

CD N @,exp ( - i k [ t - & / : T +  ...j) ,\ (2.17) 

 ON-^@, E W E , ,  A,NO, I 
which to this order in Ilk is not particularly instructive. Neither of the foregoing 
analyses resulting in equations (2.16) and (2.17) enable us to penetrate the in- 
teresting wave-number rkgime, and further minor results obtained by similar 
procedures are omitted here in the interests of brevity. 

A quasi-stationary approach, seemingly appropriate for slow processes, can 
be based on the approximate formula for the energy, 

E = E, exp [2 /' a a ( t )  d t )  
t a  

(2.18) 

with a ( t )  = Re{k<[P(k[) G(k<)]*).  

The lower limit of integration, t,, is either zero or that time when the function 
cr(t) first becomes zero, whichever is larger. The integration can be performed by 
further approximating the integrand with some simple rational function. The 
entire calculation is as tedious and laborious as the direct numerical integration 
of the relevant equations-and more uncertain. We have, however, made this 
calculation in the case of boundary-layer transition, and this is reported in the 
next section. 

A series of numerical calculations were performed and the results, which almost 
speak for themselves, are presented in figures 1-3. Although the computations 
were made for arbitrary profiles, only a few of the most typical are presented. 
Some general features do warrant further comment. 

Several graphs, for cases of collapsing shear layers, indicate the development 
of a second energy peak (figure 3). This may be explained by noting that the shear 
starts from an unstable configuration which already has a wave-number corre- 
sponding to maximum amplification. For some time, the mode with this wave- 
number (or one very nearby), continues to be amplified, and is able to maintain 
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its maximum energy content. However, as the shear layer contracts, the wave- 
number of maximum amplification shifts rapidly and decidedly through the 
original cut-off position. If enough time elapses, another mode appropriate to 
a new shear thickness replaces the first as the carrier of maximum total energy. 
The sharp changes in amplification factor in the neighbourhood of the initial 
cut-off wave-number maintain the original mode as a local maximum. 

1, 0.8 1.6 2.4 3.2 4.0 4.8 

t 

( a )  

I I I l i I I I I I I I t  
0.4 0 8  1.2 1.6 2.0 2 4  

k 

( b )  

0 0 2  0.4 0.6 0.S 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

k. 

(c) 

FIGURE 1. Collapsingcubic: ? =  1; [ =  l - ( $ - t )  t2, O < t <  1; [ =  +, t >  1. 
These graphs show E(t) /E(O) and A, as functions of k and t. 
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The process of ‘shear-layer contraction’ acts very much like a frequency or 
wavelength selector as well as an amplifier. All short wavelengths are amplified, 
all very long wavelengths suppressed; the wave-number corresponding to 
maximum amplification generally moves to the right of the corresponding value 
in the Rayleigh problem. The exact quantitative details depend on the particular 
process and time histories involved. A similar (reversed) description holds for 
the expanding layer. 
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FIGURE 2. Oscillating shear 6 = 0.6 + 0.4 cos rt, 7 = 0.5( 1 -cos ni). 
Graphs show dependence of E(t)/E(O) on k and t .  

In  cases of rapid collapse, very large amplification factors are noted. How- 
ever, the short duration of such processes imply a total energy input usually not 
more than twice the original value. The substantial changes in amplification 
factor are somewhat illusory in this respect, and the significance of this factor 
should be discounted somewhat. The parameter which emerges from this analysis 
as most significant, regarding the effects induced by the time variations, is the 
energy ratio E(t)/E(O). This factor, a function of time and wave-number, provides 
a great deal of the information desired about a particular process. 

A survey of all the results indicates that q( t ) ,  the shear velocity, is the most 
important single factor controlling the total energy amplification whereas g ( t ) ,  
the shear layer thickness, has the prime responsibility for selecting the wave- 
number corresponding to this maximum gain. In  addition, the time variation 
of shear-layer thickness imparts additional amplification to certain modes while 
it suppresses others. 

We now proceed to apply these results to a study of boundary-layer 
transition. 
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FIGURE 3. (a),  ( b )  show E(t)/E(O) and A, as functions of k for an expanding cubic layer; 
7 = 1 ; < = 1 + 3(1- gt) t2 for 0 < t < 1 ; < = 2 for t > 1. (c )  shows E(t)/E(O) as a function of 
k for a parabolic expansion; 5 = (l+&)*; L j  = 1. (d) shows E(t)/E(O) as a function of k 
for a straight line collapse ; < = 1 - i t  ; 7 = 1. 
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3. Boundary-layer transition 
Here we wish to comment on the relevance of the above flow models to the 

breakdown of the laminar boundary layer. In  order to do this it is necessary to 
review very briefly the known theoretical and experimental facts. 

During the initial stages of instability there is excellent agreement between 
theory (Lin 1945, 1955) and experiment (Schubauer & Skramstead 1948; 
Schubauer 1957 ; Klebanoff 1957). Recent developments have centred on the non- 
linear effects of these wave motions in an effort to carry the theory toward the 
transition region. The theoryproposed by Benney (1961) and Benney &Lin (1960) 
showed the importance of three dimensionality, a fact strongly indicated by the 
experiments of Klebanoff et al. (1962). A time-dependent analysis has been 
suggested by Stuart (1960) and Watson (1960), yielding possible finite amplitude 
equilibrium states of the oscillation. Both of these theories are based on perturba- 
tion techniques, and apart from some minor disagreements use essentially the 
same approach to the problem. The common feature is the modification of the 
basic flow and the generation of higher harmonics, but neither of these investiga- 
tions is meaningful beyond the beginning stages of non-linear developments. Thus, 
the importance of this type of calculation lies in the fact that it  gives a qualitative 
picture of the finite amplitude region necessary as a prerequisite for the sudden 
breakdown of the flow, rather than a description of the breakdown process itself. 
Clearly the higher-order perturbations of such theories will add little to answering 
the question of the dramatic explosion of the flow into the shorter length scales 
so characteristic of turbulence. 

A great deal is to be learned from the carefully controlled experiments of 
Klebanoff (1962) and Kovasznay et al. (1962) who have made detailed measure- 
ments at the point of breakdown. One of the most interesting features is the 
reproducibility of the initial breakdown before the random element takes over. 
Presumably this is a reflexion of the fact that the initial conditions are so well 
defined. It is found that the pre-existing finite amplitude effects produce a 
distinct periodic spanwise variation in the mean flow, associated with a longi- 
tudinal vortex structure. Superposed is the eddy system of the primary wave, 
and at various phases these two systems tend to re-enforce and cancel each other. 
Up to this point the results are in general agreement with existing theoretical 
calculations. Breakdown (defined by the occurrence of the first spike) originates 
as an almost point-like phenomenon corresponding to definite sets of values for 
x, y, z, t .  Evidently the local flow configuration at these positions is such that 
a new instability arises which is far more violent than the original one. Indeed, 
in this situation, the possible finite amplitude equilibration of the original 
instability of the Blasius profile appears to be more of an academic question than 
a real one, as in practice a new phenomenon soon dominates the system. 

An instability analysis of the new flow q(x, y, x ,  t )  caused by finite amplitude 
effects should resolve this question. While this problem can be formulated very 
easily, it presents extreme mathematical difficulties in its solution. It is therefore 
desirable to try to extract the most distinguishing features of this configuration 
and to use simplified models a t  a first attempt in any theoretical investigation. 
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Immediately prior to breakdown there is an intense shear layer formed in the 
flow once each cycle of the primary wave. This occurs a t  approximately two- 
thirds of the boundary-layer thickness and at spanwise positions, corresponding 
to the so-called ‘peaks ’ of the oscillation. Apparently this local configuration 
is a direct result of the secondary flow which moves the maximum shear away 
from the wall (where it is only just unstable), out into the boundary layer where 
it is extremely unstable. The shear so formed contracts and intensifies as the wave 
moves downstream. It must be admitted that the formation of this shear layer 
is accompanied by a three-dimensional stretching of the vortex lines, and the 
flow is not strictly unidirectional. However, in a local stability analysis the 
maximum growth rate should be proportional to the maximum local shear, and 
the latter is still aujay. 

Thus the present state of knowledge consists of the theoretical studies which 
indicate the formation of the internal shear layers, and of experimental in- 
vestigations which not only confirm their existence but also serve to determine 
the manner in which the layers develop. The latter stages of growth are extremely 
difficult to study analytically. This would have to be done by incorporating still 
higher-order perturbations in the extension of the linear stability analysis. 
Since the basic processes involved in the formation of the shear layers are 
essentially known, and since the extended theory cannot possibly succeed in 
explaining the mechanism of sudden transition, there seems little point to 
proceeding in this direction. We can circumvent these analytical difficulties by 
merely assuming that the basic time-dependent flow pattern is known, as in- 
dicated by theory and detailed by experiment. In  other words, since the modi- 
fications of the original flow by the primary instabilities are understood from the 
physical as well as theoretical view-points, they are assumed to be known, the 
details provided by the many excellent experiments. Breakdown, as we see it, 
is a direct consequence of a new phenomenon, the growth of secondary insta- 
bilities on a known, but complicated, flow (i.e. the original basic flow modified 
by the primary instabilities). 

In  this manner, we can once again utilize the linear stability theory of section 
two to investigate the growth of secondary disturbances in the known flow 
configuration. 

In  the neighbourhood of the breakdown position, where the inflexional shear 
is maximum, the local flow is approximately two dimensional. Figure 4, taken 
from the work of Kovasznay et al. (1962), shows the local behaviour of the 
modified basic flow. By taking some simple time-dependent approximations 
of this flow and utilizing the two-dimensional stability theory developed in the 
preceding section, we can compute the stability characteristics of the secondary 
disturbances. The results show that the growth of t’hese secondary instabilities 
correspond in many ways to the sudden burst of high-frequency excitation 
observed in experiments. 

The simplest model of the boundary-layer transition is the unbounded time- 
dependent shear layer of constant thickness but whose strength varies linearly 
with respect to the time. The relevant theory was developed in the paragraph 
including equation (2.15). In  order to apply the results we need only determine 
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the pertinent dimensionless parameters in accordance with the experimental 
data. Accordingly, reasonable characteristic values to use for velocity and 
distance (refer to the basic dimensionalization scheme of 2, preceding equation 
(2.2)) are U ( 0 )  = *q, 

h(0) = &B. 

In  Kovasznay’s experiments, the free-stream velocity is U, = 1100 cm/sec, 
6 = 0.6 cm is the boundary-layer thickness and 1/T orf = 100 CIS is the frequency 
of the primary excitation. 

This first model is based upon a dimensionless velocity profile for which, 
according to equation (2.4), 

70) = tlT, 
t ( t )  = 1. 

l i ~ ~ ~  

3477 4 
FIGURE 4. Instantaneous velocity profiles at fist appearance of a spike; 
taken from Kovasznay et al. (1962). T is the period of the primary wave. 

Time is measured from the onset of a shear layer until breakdown which occurs 
later at approximately half the period of the primary oscillation or at 0.005 see. 
(With these values we find that T = 23 dimensionless time units.) The energy 
increase in the secondary disturbance a t  any time during the shear development 
is, by equation (2.15) e f  seq., 

E = E O e ~ ~ ~ * / T ,  (3.1) 

so that at t = T, E N 100E,. 

The energy gain of the secondary disturbance is 100-fold (a 10-fold increase in 
amplitude) within 0-005 sec; a dramatic increase in a relatively short time. The 
wave-number corresponding to this maximum gain is the value appropriate to 
the Rayleigh problem k = cth(0) = 0.4, 

CL = 6-67cm-l. 

This value is approximately five times the wave-number of the primary dis- 
turbance (1-4 cm-l) based on the propagation velocity, c 21 0.4Uf. 

The simplest model yields results in essential agreement with experiment. 
Intense amplification of high-frequency oscillations (short wavelength) is 
observed in a very short time interval. 
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Rather than elaborate upon the comparison of theory with experiment at this 
time, it is preferable first to complete the discussion of other pertinent models. 
These include a quasi-stationary calculation and an oscillatory simple shear 
simulation in which both shear strength and thickness vary with time. These 
models were discussed in the preceding section and it remains only to apply the 
results to the particular configuration, i.e. to model the free shear layers as 
closely as possible to the boundary-layer profiles. Finally, a more realistic model 
based on a time-dependent simulation of the actual boundary-layer profile is 
considered and the results compared to the foregoing. 

Henceforth, it  is desirable to change the basis of our reference quantities so that 

U ( 0 )  = v,, h(0) = 6, 

for these characteristic values are more appropriate to a boundary-layer simula- 
tion. The relationship between this system and that used previously is rather 
elementary. 

The quasi-stationary approach is based on the formula 

E = E0exp2I(t), 

with 

cr(t) = Re{kt[F(k<) Cjkt)]”.  

If (ti, r i )  and (&, qf) denote the initial and final values of shear thickness and 
strength, then we use the approximation 

5 = 5i + ( f  - t‘) t/T, 

7 = 7i + (7f- T i )  t/T, 

in order to evaluate the integral I .  Furthermore, the amplification factor is 
also replaced by 

~ ( 2 )  = Az( 1 - 2/20) (1 + b ~ )  (Z < xO), 
= o  (2 2 ZO), 

where ~’ (0 .4)  = 0, ~ ( 0 . 4 )  = 0.2, z0 = 0.64. In  particular, we take T = 9.16, 
v i  = 0,  ti = 0.2, vf = 0.25, tf = 0.05 so that b = 5, A = $. For these values 
and the specific choice fc = 4, we find that 

I = z&[1.67(t3- (2.44)3) - 0.082(t4- (2~44)~)]. 

The energy determined in this approximate fashion is shown in figure 7 as a 
function of time. It should be noted that there are serious difficulties in this 
approach, which we shall not discuss at this time. 

The oscillatory simple shear simulation is based upon the profile 

6 = 0.125 + 0-075 sin 27rtlT, 
7 = 0.125(10-~0~2;rrt/T), 

T = 18.33. 

(3.2) 

Here for the first time, we allow for the selection of the wave-number corre- 
sponding to maximum amplification by the time variation of shear thickness. 
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The numerical integration is again over a half period. The results are so similar 
to those shown in figure 6 that they are omitted here. It is seen that the wave- 
number of the most amplified mode shifts to the right during the process. The 
‘peak’ value of k at the end of the half period lies between 4.5 and 5-0 (7.5 em-l 
and 8-33 em-I); the corresponding Rayleigh value in these units is 4 (6.67 em-I). 
The shift amounts to a change of about 15 to 25%. The wave-number of the 
secondary disturbances is five to six times that of the primary oscillation 
(1.4 em-l). 

Especially noteworthy is the fact that significant amplification of the energy 
in the final ‘peak’ mode does not occur until one-quarter of the period elapses. 
Therefore the principal changes take place in only one quarter period of the 
primary oscillation-a very short time indeed. The disturbance energy increases 
by two orders of magnitude (between 100 and 500 times) by the time breakdown 
is observed, 9 < t < 10. Of course, since the theory is linear, these amplifications 
are only indicative of substantial changes in the flow. 

Thus far the modes have been based upon free shear-layer approximation. 
Although these models are directly relevant to the problem of boundary-layer 
transition, there are certain refinements that are desirable. For example, we 
should compute the effects of the wall at  y = 0; it turns out that since the shear- 
layer thickness is much smaller than its distance from the wall, the modifications 
are rather unimportant. Of more interest is the fact that the shear-layer models 
are always unstable configurations. It is important in the boundary layer to 
trace the instability associated with the formation of this internal shear layer 
starting with a neutrally stable flow. Again it is always desirable to refine the 
analysis by using a more realistic profile. It must be noted, however, that the 
main results of this more exact analysis are very similar with those obtained 
using the oscillatory simple shear simulation. 

We consider a model consisting of four straight lines to simulate the basic 
flow. The profile is used as an approximation to Kovasznay’s measurements 
(figure 4) 

where dimensionless variables are based on the free-stream velocity and boun- 
dary-layer thickness as velocity and length scales. It will be supposed that ,u 
and 1 are constants but 7 and 5 are known functions of time. (In particular our 
interest centres on the case in which they are periodic functions of time.) 

The stability problem requires the solution of 

( i + i k G )  (&-k2) q5-ikZYY$ = 0 ,  (3.4) 

10 Fluid Rlech. 15 
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where Ti is defined by equation (3.3). The boundary conditions are 
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#(O,t) = 0 ,  
lim#(y,t) = 0, 
l/+m I 

with the jump conditions 

[$I, = 0,  [(;+ikG)#,-ik@,] = 0, 
1/ 

where y = I, 5, 1 (in the notation used in 3 2). 
To solve equation (3.4) subject to the conditions (3.5) we take 

acoshky+bsinhky, 5 < y < 1, 

d e-ky, 

gcoshky-thsinhky, I < y < 6, 
% e sinh ky, O < y < l .  

(3.7) 

The jump conditions (3.6) then yield six equations for the six unknown func- 
tions a, b, d, e, g, h. In  practice it was found convenient to work with four linear 
combinations, namely, A, B, C, D; where 

a. = e-kA + e k B ,  

i b = e-kA-ekB, 

g = ekC, 

h = ek D. 
The three differential equations governing the motion are found to be 

(3.9) 

d 5  ,u 7-,u sinhkl sinhk(5-1) 
dt ( 1  5-11 sinhkc 

k(y-p)+ik-cothk<+ - -__ 

1 f!? = i A [ ( p - m )  e-2k(l+cothkZJsinh2kZ 
at 1 g-1 

1 - iB[ (7 ’ - ’-’ m) (1-cothk5)sinh2k1 

,u 7-,u sinhkl sinhk(g-1) 
+iC -kp+ --__ [ ( 1  g-l) sinhkc 

(3.11) 

(3.12) D = A (  1 + coth k<) e-2k - B( 1 - cot,h kg) - C coth kc. 
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The total energy in the disturbance is 

(3.13) 
Eft) = qm (PI"@ 1 Id*P) dY, 

0 

and the component energies in the various layers are given by, 

El(t) = 2nk fdy, 

E,(t)  = 2nkJc11dy, 

4 

1 
Clearly E = CE,.  

A little algebra shows that 

E(t) oc e-2k[ l  +e-2k( l  -e-2kc)-1]AA* 

(3.14) 

(3.15) 

+ e-2k5 (1 - e - 2 K - 1  BB* + e-2k (1 - e--2kC)--1 (AB* + A*B) 

+i[(1+e-2kz ) (1 - e-2kz)-1 - (1 + e-2kc) (1 - e-2kc)-1] Cc*, (3.16) 

E l ( t )  cc AA*+BB*+AB*++*B, (3.17) 

E2(t) cc (1 -e-2k(1--5)) (e-2kAA*+e-2kcBB*), (3.18) 

+ (1 +e-4k~-e-2k(c--I)-e-2k(c+7)) (CD*+C*D)], (3.19) 

E 4 ( t )  oc (1  +e-2kz)2CC*+(1-e-2kz)2DD*+(1-e-4kz)  (CD*+C*D). (3.20) 

Here E( t ) /E(O)  is a measure of the instability, and E,(t) /E(O) gives a measure 
of the amplitude concentration in y. 

Our interest lies in the case when 7 and 5 are periodic functions of time; over 
one half period the profile %(y, t )  goes from something approximating a Blasius 
profile to one approximating a shear profile well out in the boundary layer. On 
a quasi-steady basis the first profile shown in figure 4 would be neutral; the 
equations (3.9)-(3.19) having solutions proportional to e-iwt with three values 
of w all real. However, in the same way, the third profile (tlT = 0.38) of figure 4 
would exhibit an inflexional instability, resulting in two of the w's being complex 
conjugates and remaining one real. Therefore, over one half cycle of the primary 
wave, the local flow characteristics can give rise to a strong instability associated 
with the formation of the shear layer. At time t = 0,  using ~ ( 0 )  and c ( O ) ,  there are 
three values of w (dC) < d b )  < w@) which were found for given values of the wave- 
number k ,  as were the corresponding initial values of the eigenfunctions for each 
case. (In other words, we assume r(t)  = r(O), { ( t )  = c(0) for t 6 0.) With these 
initial values the equations were then integrated using a fourth-order Runge- 
Kutta method, and the corresponding energy ratios calculated. These are shown 

E3(t) cc e2k5 [( 1 - e-4W - e-zk(5-0 - e-2k(C+O) (CC* + DD*) 

10-2 
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in figures 5 and 6. The superscripts correspond to the three cases. It was found 
that the initial conditions corresponding to mode ‘b’  produced the largest 
energy gains, although mode ‘ u ’  was also strong (figure 5(a) ) ;  mode ‘ c ’  was 
comparatively weak and is omitted in the diagrams. In  all calculations we took 

p = 0.4, 

1 = 0.22, 

7 = 0.70+ 0 . 2 0 ~ 0 ~  (2~t/18.33) ,  

5 = 0.75-0 .15~0~(2~f /18 .33) ,  

I I I I I 1 

1 O( 

la 

1 

k = 4.0 

k -- 6.5 

FIGURE 5. (a)  E(a)(t)/E(a)(0) (----), E(b)(t)/E(b)(0) (-), as functions of k for various 
times t, in boundary-layer simulation. ( b )  E(b)(t)/E(b)(0) as a function of t  for various wave- 
numbers k ; p  = 0*4,1= 0-22, q = 0*70+0.20 cos 2 4 T ,  < = 0.75-0.15 cos 2nt /T;  T = 18.33. 

which yield a reasonable straight-line approximation to the profile measured by 
Kovasznay et ul. In  particular, the shear strength and shear thickness were made 
to conform as closely as possible, although no variation of the shear zone with 
height has been incorporated. 

The results clearly show the disturbance energy to peak strongly near k = 5 in 
one half cycle of the primary wave. The wave-number corresponding to peak 
excitation shifts to higher values as the shear layer collapses (wave-number 
selection). The principal amplification occurs only over the quarter cycle pre- 
ceding breakdown. The amplitude gain is one order of magnitude, the energy gain 
at least two orders. 
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The energy in the disturbance is concentrated mainly in the shear zone; the 
wall produces little effect on the stability characteristics. It is not surprising 
then that the oscillatory simple shear simulation provides almost identical results 
with the more exact boundary-layer model. This is illustrated in figure 7 which 

100 

101 

I I I I I I 

k 

FIGURE 6. E ( b ) ( t ) / E ( b ’ ( 0 )  (-), EF’( t ) /E(b) (0)  (----), E!’(t)/E(’’(O) (-- ), E$)(t)/E(b)( 0 )  
(- - - - -), as functions of k for various times t .  Time t = 10 is indicated. Each energy ratio 
is shown at t = 9, 8, 7 and (for E ( b ) / E ( b ) ( 0 ) )  at t = 5, 2. 

presents E(t)/E(O) versus time for the particular mode k = 4, as determined by 
each of the four models; simple shear, quasi-steady, oscillatory simple shear, 
boundary-layer simulation. The comparison implies that the significant 
amplification occurs in it shorter time interval for those cases involving a variable 
shear thickness. The more realistic models lead to peak amplification of higher 
wave-number modes in a shorter time interval. 
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These calculations are a strong indication that the secondary instabilities on 
the modified boundary-layer flow are indeed a mechanism for the sudden 
amplification of high-frequency disturbances. 

loo 
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1 1 1 1 1 1 1 l 1 1 1 1 1  

Quasi-steady 

Simple she: 

A 1 2 3  

t 

FIGURE 7. E(t)/E(O) for k = 4 comparing results of four theories; boundary-layer 
simulation, oscilIatory shear simulation, quasi-steady, and simple shear models. 

4. Conclusion 
The investigation of the preceding section utilizes simple models of the basic 

flow as modified by the primary oscillations in order to determine the stability 
characteristics of the secondary disturbances, The analysis is linear but the 
growth rates are such that the tendency toward a violent instability is con- 
clusive. A finite amplitude inviscid analysis of the steady shear layer discussed 
in § 2 shows that the first Landau constant is a pure imaginary. To this order then 
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there is no tendency for the growth rate to be modified, but only a dependence 
of frequency on amplitude. 

We have found that over one half cycle of the primary wave the amplitude of 
the most unstable secondary wave will increase by a factor of the order of 10, its 
energy by a factor of 100 or more. The wavelength of the secondary instability cor- 
responding to maximum gain is about one-fifth that of the primary oscillation 
corresponding to an instability with frequency about eight times that of the 
primary wave. The contraction process acts as a frequency selector and an am- 
plifier. Thus a theory based on a local secondary instability of the shear layer is in 
reasonable agreement with the breakdown measurements of Klebanoff and 
Kovasznay. The development of the observed ‘spikes’ is doubtless largely 
governed by three-dimensional and non-linear effects, but their formation is 
explainable by the ideas proposed here. 

A simple picture of this process is the continuous creation of local instabilities 
(leading to the birth of turbulent spots) a t  favourable positions and times corre- 
sponding to the most intense shear layer. At a fixed position optimum conditions 
will occur once each cycle of the primary wave. This new instability will be 
convected downstream with a speed c2 (corresponding to the local inflexional 
speed); c2 being approximately twice the speed c1 of the primary wave. This 
idealization is conveniently represented in an (x, t)-plane as indicated in figure 8; 
here x = 0 represents the position of the onset of the secondary instability and 
A, the wavelength of the primary oscillation. Measurements made just beyond 
x = 0 should show bursts of the new instability, again consistent with the ex- 
periments. Alternatively, this process can be considered as an eddy-shedding 
mechanism relative to an observer moving with the wave, as has been suggested 
by Klebanoff (1962). 

The simple qualitative picture we propose can be summarized as follows. The 
strong three-dimensional features of the initial instability tend to ‘soften up ’ 
local spanwise positions for the occurrence of a violent secondary instability of 
the Helmholtz type. It may well be that a purely two-dimensional disturbance 
alone can produce this shear layer if its amplitude is large enough; but the 
inevitable three dimensionality accelerates its development in particular with 
respect to its position relative to the wall. In  natural transition, where the three 
dimensionality is not as organized as in the controlled case one would expect the 
primary instability to be longer in extent and the breakdown to occur a t  less 
regular spanwise positions. It may be conjectured that high instabilities corre- 
sponding to the breakdown of local vortex sheets can give rise to shorter length 
scales in a similar manner, as a cascade-type process. 

The recent experiments of Sat0 & Kuriki (1961) on the instability of the laminar 
wake show the breakdown process to be much less violent. Thisis not surprising in 
view of the fact that while any local shears produced by the secondary flow may 
give rise to short length scale instabilities their growth rates are determined by 
the maximum local shear. Any secondary instability arising will therefore be 
governed by a geometry similar to that of the primary instability and their 
growth rates can be expected to be comparable. In  the case of the boundary layer, 
the primary and secondary instabilities develop from very different geometries 
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and their growth rates are by no means comparable. Also it should be noted that 
the wake is a case of an expanding layer and hence the longer primary waves 
tend to be accentuated. 

Finally, we would again stress that the models investigated are simplified 
flows which exhibit only the dominant features of the observed flow at break- 

L 

X 

FIGURE 8. (2, t )  representation showing favourable locations 
for onset of secondary instability. 

down. There are many improvements that should be included to give a better 
description; in particular that the development is really space-like rather than 
time-like. The above analysis is an attempt to give a simple theoretical explanation 
of what must be a very complicated physical situation. 
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